SCHEME OF COURSE WORK Dept. of Information Technology

Course Details:							
Course Title	Natural Langue Processi	ing					
Course Code	15IT11M2		LTPC	: 3 003			
Program:	B.Tech						
Specialization:	IT (Professional Elective III – Online)						
Semester	VI						
Prerequisites	Data Structures, Artificia	l Intelligence, Inti	roduction to Mach	ine Learning			
Courses to which it is a prerequisite None							

Course Outcomes (COs):

1	Understand the basic concepts of NLP
2	Understand Indian Language Processing Techniques
	Understand Hidden Markov Models and forward
3	backward algorithms
4	Understand the basic IR models
5	Understand the techniques of Word Sense Disambiguation

Course Outcome versus Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3											3	2		
CO2	3											3	2		
CO3	3											2	1		
CO4	3											2	1		
CO5	3											2	1		

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Programme Specific Outcomes (PSOs)

At the end of the Programme, a student will be able to

- **PSO1:** Plan, develop, implement, and evaluate IT solutions to specific business problems usingspecific programming language and software tools.
- PSO2: Design and Develop Network, Mobile and Web-based Computational systems underrealistic constraints.
- **PSO3**: Design and implement fundamental network security solutions.

Programme Outcomes (POs)

At the end of the Programme, a student will be able to

- **PO1:** Apply the knowledge of mathematics, science, engineering fundamentals and principles of Information Technology to solve problems in different domains.
- **PO2:** Analyze a problem, identify and formulate the computing requirements appropriate to its solution.
- **PO3:** Understand to design, develop and evaluate software components and applications that meet specifications within the realistic constraints including cultural, societal and environmental considerations.
- **PO4:** Design and conduct experiments, as well as analyze and interpret data
- **PO5:** Use appropriate techniques and tools to solve domain specific interdisciplinary problems.
- **PO6:** Understand the impact of Information technology on environment and the evolution and importance of green computing.
- **PO7:** Analyze the local and global impact of computing on individual as well as on society and incorporate the results in to engineering practice.
- **PO8:** Demonstrate professional ethical practices and social responsibilities in global and societal contexts.
- **PO9:** Function effectively as an individual, and as a member or leader in diverse andmultidisciplinary teams.
- **PO10:** Communicate effectively with the engineering community and with society at large.
- **PO11:** Understand engineering and management principles and apply these to one's own work, asa member and leader in a team, to manage projects.
- **PO12:** Recognize the need for updating the knowledge in the chosen field and imbibing learning tolearn skills.

Week	Topic/Contents	Course	Sample Questions	Teaching	Assessment
		Outcome		Learning	Method &
				Strategy	Schedule
1	Introduction, Stages of	CO 1	1. Role of NLP in the	Online Video	Assignment – I,
	NLP, Stages of NLP		domain of AI.	Lecturing,	Quiz – I
	Continue, Two approaches		2. What are the	Doubt	Mid – I
	to NLP.		different stages of	Clarification,	(Week – 8)
			NLP?	Sample	
			3. Explain the	Experiments	
			procedure to		
			incorporate NLP in the		
			domain specific		
			problems.		

Teaching-Learning and Evaluation

2	Sequence Labeling and Noisy Channel, Noisy Channel: Argmax based	CO 1	1. What is sequence labelling in the time series data?	Online Video Lecturing, Doubt Clarification,	Assignment – I, Quiz – I Mid – I (Week – 8)
				Sample Experiments	
3	Argmax based computation, Noisy Channel Application to NLP	CO 1	1. What is argmax based computation in solving the NLP problems.	Online Video Lecturing, Doubt Clarification, Sample Experiments	Assignment – I, Quiz – I Mid – I (Week – 8)
4	Brief on probabilistic parsing & Start of part of speech tagging, Part of Speech Tagging, Part of Speech Tagging continued	CO 2	 What is probabilistic parsing explain in detail. What POS explain in detail. 	Online Video Lecturing, Doubt Clarification, Sample Experiments	Assignment – I, Quiz – I Mid – I (Week – 8)
5	Part of Speech Tagging continued & Indian Language in Focus, Morphology analysis, Part of Speech Tagging continued & Indian Language consideration, accuracy measure	CO 2	 How to apply NLP techniques to Indian languages. How to measure accuracy of POS. 	Online Video Lecturing, Doubt Clarification, Sample Experiments	Assignment – I, Quiz – I Mid – I (Week – 8)
6	POS Tagging, Fundamental Principle, Why Challenging, accuracy, POS Tagging, Accuracy Measurement, Word Categories, AI and Probability: HMM	CO 2	1. What are the fundamental principles of POS tagging.	Online Video Lecturing, Doubt Clarification, Sample Experiments	Assignment – I, Quiz – I Mid – I (Week – 8)
7	HMM, Viterbi, Forward Backward Algorithm	CO 3	1. Explain Forward and Backward algorithm.	Online Video Lecturing, Doubt Clarification, Sample Experiments	Assignment – I, Quiz – I Mid – I (Week – 8)
8	HMM, Viterbi, Forward Backward Algorithm Continued	CO 3	1. What is HMM, how to apply HMM to NLP.	Online Video Lecturing, Doubt Clarification, Sample Experiments	Assignment – I, Quiz – I Mid – I (Week – 8)
9	Mid Test - I				

10	HMM, Viterbi, Forward	CO 3	1. Explain with an	Online Video	Assignment – I,
	Backward Algorithm, Baum		example Baum Welch	Lecturing,	Quiz – I
	Welch Algorithm, HMM,		Algorithm.	Doubt	Mid – I
	Viterbi, Forward, Backward			Clarification,	(Week – 18)
	Algorithm, Baum Welch			Sample	
	Algorithm Cont			Experiments	
11	Natural Language Processing	CO 3	1. How NLP and IRS	Online Video	Assignment – I,
	and information retrieval		are related, explain the	Lecturing,	Quiz – I
			applications of NLP in	Doubt	$M_{1d} - I$
			the domain of IRS.	Clarification,	(Week – 18)
				Sample	
10		CO 2		Experiments	A set sum sud T
12	CLIA, IR Basics, IR Models,	03	1. What are different	Unline video	Assignment -1 ,
	Boolean Vector		ik models explain with	Deubt	Quiz - 1
			suitable examples.	Doubt	W u = 1 (Weels 18)
				Claimcation,	(Week - 10)
				Experiments	
13	IP Models NI P and IP	CO 4	1 What is PCA	Online Video	Assignment I
15	rolationship BCA SVD	0.4	explain how PCA can	Lecturing	Assignment -1 , Ouiz -1
	Telationship, PCA, SVD,		be applied to reduce	Doubt	Mid = I
	Indexing (LSI)		the size of the dataset	Clarification	(Week - 18)
	Indexing (LSI)		the size of the dataset.	Sample	(1000 10)
				Experiments	
14	Wordnet and Word Sense	CO 4	1. What is word sense	Online Video	Assignment – I,
	Disambiguation.		disambiguation?	Lecturing,	Quiz – I
	5			Doubt	Mid – I
				Clarification,	(Week – 18)
				Sample	
				Experiments	
15	Wordnet and Word Sense	CO 4	1. How to overcome	Online Video	Assignment – I,
	Disambiguation cont,		word sense	Lecturing,	Quiz – I
	Wordnet, Metonymy Word		disambiguation while	Doubt	Mid – I
	Sense Disambiguation		processing Natural	Clarification,	(Week – 18)
			language.	Sample	
1.5			4 1111	Experiments	
16	Word Sense	CO 5	1. What are the	Online Video	Assignment – I,
	Disambiguation, Overlap		different supervise	Lecturing,	$Qu_1z - I$
	based method, supervised		word sense	Doubt	$M_{10} - I$
	method, Word Sense		uisambiguation	Clarification,	(week – 18)
	Disambiguation,		methods explain with	Sample	
	supervised and		examples.	Experiments	
	unsupervised methods,		2. What are the		
	Word Sense		word sense		
	Disambiguation, semi-		disambiguation		
	supervised and		methods explain with		
	unsupervised methods,		memous explain with		

	resource – constrained		examples.		
	WSD				
17	resource – constrained	CO 5	1. Explain Parsing	Online Video	Assignment – I,
	WSD, Parsing Algorithm,		algorithm with	Lecturing,	Quiz – I
	Parsing Ambiguous		example.	Doubt	Mid – I
	sentences, Probabilistic		2. Explain probabilistic	Clarification,	(Week – 18)
	Parsing, Probabilistic Parsing		parsing algorithm with	Sample	
	Algorithms		example	Experiments	
18	Mid Test - II				
19/20	End Semester Examination				